A380959 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of k with product n.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Array begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12 --------------------------------------------------- n=1: 1 1 1 1 1 1 1 1 1 1 1 1 1 n=2: 0 0 1 1 1 1 1 1 1 1 1 1 1 n=3: 0 0 0 1 1 1 1 1 1 1 1 1 1 n=4: 0 0 0 0 2 2 2 2 2 2 2 2 2 n=5: 0 0 0 0 0 1 1 1 1 1 1 1 1 n=6: 0 0 0 0 0 1 2 2 2 2 2 2 2 n=7: 0 0 0 0 0 0 0 1 1 1 1 1 1 n=8: 0 0 0 0 0 0 2 2 3 3 3 3 3 n=9: 0 0 0 0 0 0 1 1 1 2 2 2 2 n=10: 0 0 0 0 0 0 0 1 1 1 2 2 2 n=11: 0 0 0 0 0 0 0 0 0 0 0 1 1 n=12: 0 0 0 0 0 0 0 2 3 3 3 3 4 The A(12,9) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1). The A(9,12) = 2 partitions are: (9,1,1,1), (3,3,1,1,1,1,1,1).
Crossrefs
Programs
-
Mathematica
nn=12; tt=Table[Length[Select[IntegerPartitions[k],Times@@#==n&]],{n,1,nn},{k,0,nn}] (* array *) tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *) Join@@tr (* sequence *)
Formula
A(n,k) = A379666(k,n).
Comments