A380966 a(n) is an upper bound such that there exists an m X m magic square of n-th powers for all m >= a(n).
36, 52, 84, 140, 164, 196, 224, 252, 284, 312, 344, 372, 404, 436, 468, 500, 532, 564, 596, 632, 664, 696, 732, 764, 796, 832, 864, 900, 936, 968, 1004, 1036, 1072, 1108, 1144, 1180, 1212, 1248, 1284, 1320, 1356, 1392, 1428, 1464, 1500, 1536, 1572, 1608, 1644, 1680
Offset: 2
Keywords
Links
- Brady Haran and Matt Parker, A Magic Square Breakthrough, YouTube Numberphile video, 2025.
- Nick Rome and Shuntaro Yamagishi, On the existence of magic squares of powers, arXiv:2406.09364v2 [math.NT], 2024.
- Index entries for sequences related to magic squares
Crossrefs
Cf. A364264.
Programs
Formula
a(n) = 4*2^n + 20, if 2 <= n <= 4;
a(n) = 4*ceiling(n*(log(n) + 4.20032)) + 20, if n >= 5. Cf. Rome and Yamagishi (2024), eq. (2.2).
Comments