This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380977 #14 May 06 2025 09:19:31 %S A380977 1,0,2,0,2,6,0,2,18,24,0,2,42,144,120,0,2,90,600,1200,720,0,2,186, %T A380977 2160,7800,10800,5040,0,2,378,7224,42000,100800,105840,40320,0,2,762, %U A380977 23184,204120,756000,1340640,1128960,362880,0,2,1530,72600,932400,5004720,13335840,18627840,13063680,3628800 %N A380977 Triangle read by rows: T(n,m) (1<=m<=n) = number of surjections f:[n]->[m] with f(n) != f(j), j<n. %C A380977 Number of n-tuples containing all elements of [m] with a unique last element. %C A380977 Consider an urn with m balls of pairwise different colors. T(n,m) is motivated by the probability p(n,m) for exactly n draws with replacement needed to obtain all colors; p(n,m)=T(n,m)/m^n. - With m fixed and n running, p(n,m) is a probability distribution. The expected number of draws needed to obtain all colors is Sum_{j=1..m} m/j. (Expected value provided by M. Shackleford.) %H A380977 Michael Shackleford, <a href="https://mathproblems.info/working.php">Problem 74. Free gift in the cereal box problem #2</a>, Mathproblems.info. %F A380977 T(n,m) = m!*S2(n-1,m-1) = m!*A048993(n-1,m-1). %F A380977 T(n,m) = m*A131689(n-1,m-1). %F A380977 T(n,3) = A068293(n-1), n>1. %e A380977 The triangle T(n,m) begins: %e A380977 n\m 1 2 3 4 5 6 7 8 9 10 ... %e A380977 1: 1 %e A380977 2: 0 2 %e A380977 3: 0 2 6 %e A380977 4: 0 2 18 24 %e A380977 5: 0 2 42 144 120 %e A380977 6: 0 2 90 600 1200 720 %e A380977 7: 0 2 186 2160 7800 10800 5040 %e A380977 8: 0 2 378 7224 42000 100800 105840 40320 %e A380977 9: 0 2 762 23184 204120 756000 1340640 1128960 362880 %e A380977 10: 0 2 1530 72600 932400 5004720 13335840 18627840 13063680 3628800 %e A380977 ... %e A380977 T(4,3)=18 is the number of 4-sequences of draws from [3] completing the covering of [3] with the last draw; these sequences are (without brackets and commas): %e A380977 1123 1213 1223 2113 2123 2213 1132 1312 1332 %e A380977 3112 3132 3312 2231 2321 2331 3221 3231 3321 %t A380977 Table[m! StirlingS2[n - 1, m - 1], {n, 10}, {m, n}]//Flatten %Y A380977 Cf. A048993, A068293, A131689. %Y A380977 Row sums give A005649(n-1) for n>=1. %K A380977 nonn,tabl %O A380977 1,3 %A A380977 _Manfred Boergens_, Feb 10 2025