This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380981 #10 Feb 13 2025 21:15:42 %S A380981 1,5,7,0,8,2,0,3,9,3,2,4,9,9,3,6,9,0,8,9,2,2,7,5,2,1,0,0,6,1,9,3,8,2, %T A380981 8,7,0,6,3,2,1,8,5,5,0,7,8,8,3,4,5,7,7,1,7,2,8,1,2,6,9,1,7,3,6,2,3,1, %U A380981 5,6,2,7,7,6,9,1,3,4,1,4,6,9,8,2,4,3,2,4,3,2 %N A380981 Decimal expansion of the medium/short edge length ratio of a disdyakis triacontahedron. %H A380981 Paolo Xausa, <a href="/A380981/b380981.txt">Table of n, a(n) for n = 1..10000</a> %H A380981 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>. %H A380981 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>. %F A380981 Equals (3/10)*(3 + sqrt(5)) = (3/10)*(3 + A002163). %F A380981 Equals A176015 + 2/5. %e A380981 1.57082039324993690892275210061938287063218550788... %t A380981 First[RealDigits[3/10*(3 + Sqrt[5]), 10, 100]] %Y A380981 Cf. A380982 (long/short edge length ratio). %Y A380981 Cf. A002163, A379388, A379708, A379709, A379710, A379711, A380940, A380941, A380942. %Y A380981 Apart from leading digits the same as A176015, A134976 and A010499. %K A380981 nonn,cons,easy %O A380981 1,2 %A A380981 _Paolo Xausa_, Feb 10 2025