cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380982 Decimal expansion of the long/short edge length ratio of a disdyakis triacontahedron.

This page as a plain text file.
%I A380982 #10 Feb 13 2025 21:15:47
%S A380982 1,8,4,7,2,1,3,5,9,5,4,9,9,9,5,7,9,3,9,2,8,1,8,3,4,7,3,3,7,4,6,2,5,5,
%T A380982 2,4,7,0,8,8,1,2,3,6,7,1,9,2,2,3,0,5,1,4,4,8,5,4,1,7,9,4,4,9,0,8,2,1,
%U A380982 0,4,1,8,5,1,2,7,5,6,0,9,7,9,8,8,2,8,8,2,8,8
%N A380982 Decimal expansion of the long/short edge length ratio of a disdyakis triacontahedron.
%H A380982 Paolo Xausa, <a href="/A380982/b380982.txt">Table of n, a(n) for n = 1..10000</a>
%H A380982 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisTriacontahedron.html">Disdyakis Triacontahedron</a>.
%H A380982 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_triacontahedron">Disdyakis triacontahedron</a>.
%F A380982 Equals 1/sqrt(5) + 7/5 = A020762 + 7/5.
%e A380982 1.8472135954999579392818347337462552470881236719223...
%t A380982 First[RealDigits[7/5 + 1/Sqrt[5], 10, 100]] (* _Paolo Xausa_, Feb 10 2025 *)
%Y A380982 Cf. A380981 (medium/short edge length ratio).
%Y A380982 Cf. A020762, A379388, A379708, A379709, A379710, A379711, A380940, A380941, A380942.
%Y A380982 Apart from leading digits the same as A176453, A134974 and A010476.
%K A380982 nonn,cons,easy
%O A380982 1,2
%A A380982 _Paolo Xausa_, Feb 10 2025