This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380984 #23 Feb 20 2025 06:32:38 %S A380984 5,7,11,17,67,101,167,1667,166667,666667,66666667,666666667, %T A380984 1666666667,66666666667,166666666667,166666666666667, %U A380984 66666666666666666667 %N A380984 Primes p such that p*(p-1) consists of exactly two different decimal digits. %C A380984 Primes in A380974. %C A380984 Contains (10^k+2)/6 for k in A076850 and (2*10^k + 1)/3 for k in A096507. It is conjectured that these sequences are infinite. %C A380984 The last decimal digit of a(n)*(a(n)-1) is either 0, 2 or 6. - _Chai Wah Wu_, Feb 19 2025 %e A380984 a(5) = 67 is a term because it is prime and 67 * 66 = 4422 consists of digits 2 and 4. %p A380984 p:= 1: R:= NULL: count:= 0: %p A380984 while count < 11 do %p A380984 p:= nextprime(p); %p A380984 if nops(convert(convert(p*(p-1),base,10),set)) = 2 then %p A380984 R:= R,p; count:= count+1 %p A380984 fi; %p A380984 od: %p A380984 R; %t A380984 Select[Prime[Range[10^6]],Length[Union[IntegerDigits[#(#-1)]]]==2&] (* _James C. McMahon_, Feb 13 2025 *) %o A380984 (PARI) isok(k) = isprime(k) && #Set(digits(k*(k-1))) == 2; \\ _Michel Marcus_, Feb 11 2025 %o A380984 (Python) %o A380984 from math import isqrt %o A380984 from itertools import count, combinations, product, islice %o A380984 from sympy import isprime %o A380984 def A380984_gen(): # generator of terms %o A380984 for n in count(1): %o A380984 c = [] %o A380984 for a in combinations('0123456789',2): %o A380984 if '0' in a or '2' in a or '6' in a: %o A380984 for b in product(a,repeat=n): %o A380984 if b[0] != '0' and b[-1] in {'0','2','6'} and b != (a[0],)*n and b != (a[1],)*n: %o A380984 m = int(''.join(b)) %o A380984 q = isqrt(m) %o A380984 if q*(q+1)==m and isprime(q+1): %o A380984 c.append(q+1) %o A380984 yield from sorted(c) %o A380984 A380984_list = list(islice(A380984_gen(),10)) # _Chai Wah Wu_, Feb 19 2025 %Y A380984 Cf. A076850, A096507, A380974. %K A380984 nonn,base,more %O A380984 1,1 %A A380984 _Robert Israel_, Feb 11 2025 %E A380984 a(12)-a(17) from _Jinyuan Wang_, Feb 12 2025