This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380987 #8 Feb 18 2025 15:34:09 %S A380987 1,9,25,27,121,169,289,81,125,841,961,675,1681,1849,2209,243,3481, %T A380987 1125,4489,3267,5329,6241,6889,2025,1331,10201,625,7803,11881,12769, %U A380987 16129,729,18769,19321,22201,2197,24649,26569,27889,9801,32041,32761,36481,25947 %N A380987 Position of first appearance of n in A290106 (product of prime indices divided by product of distinct prime indices). %C A380987 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A380987 All terms are odd. %e A380987 The first position of 12 in A290106 is 675, with prime indices {2,2,2,3,3}, so a(12) = 675. %e A380987 The terms together with their prime indices begin: %e A380987 1: {} %e A380987 9: {2,2} %e A380987 25: {3,3} %e A380987 27: {2,2,2} %e A380987 121: {5,5} %e A380987 169: {6,6} %e A380987 289: {7,7} %e A380987 81: {2,2,2,2} %e A380987 125: {3,3,3} %e A380987 841: {10,10} %e A380987 961: {11,11} %e A380987 675: {2,2,2,3,3} %e A380987 1681: {13,13} %e A380987 1849: {14,14} %e A380987 2209: {15,15} %e A380987 243: {2,2,2,2,2} %e A380987 3481: {17,17} %e A380987 1125: {2,2,3,3,3} %t A380987 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A380987 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A380987 q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,10000}]; %t A380987 Table[Position[q,k][[1,1]],{k,mnrm[q]}] %Y A380987 For factors instead of indices we have A064549 (sorted A001694), firsts of A003557. %Y A380987 The additive version for factors is A280286 (sorted A381075), firsts of A280292. %Y A380987 Position of first appearance of n in A290106. %Y A380987 The additive version is A380956 (sorted A380957), firsts of A380955. %Y A380987 For difference instead of quotient see A380986. %Y A380987 The sorted version is A380988. %Y A380987 A000040 lists the primes, differences A001223. %Y A380987 A003963 gives product of prime indices, distinct A156061. %Y A380987 A005117 lists squarefree numbers, complement A013929. %Y A380987 A055396 gives least prime index, greatest A061395. %Y A380987 A056239 adds up prime indices, row sums of A112798, length A001222. %Y A380987 A304038 lists distinct prime indices, sum A066328, length A001221. %Y A380987 Cf. A000720, A007947, A046660, A066503, A071625, A136565, A178503, A175508, A325034, A379681. %K A380987 nonn %O A380987 1,2 %A A380987 _Gus Wiseman_, Feb 14 2025