This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380989 #33 Feb 21 2025 09:32:17 %S A380989 1,6,30,210,900,7776,27000,279936,810000,9261000,24300000,362797056, %T A380989 729000000,13060694016,21870000000,408410100000,656100000000, %U A380989 16926659444736,19683000000000,609359740010496,590490000000000,18010885410000000,17714700000000000 %N A380989 Position of first appearance of n in A380958 (number of prime factors minus sum of distinct prime exponents). %C A380989 Is this sequence strictly increasing? %C A380989 From _David Consiglio, Jr._, Feb 20 2025: (Start) %C A380989 The answer to the question above is: no, a(21) < a(20). And all subsequent odd indexed terms are lower than their even predecessors. %C A380989 All terms must be a product of x primes (with multiplicity) to the y power where x-y = n and x mod y = 0. There are very few combinations of numbers that meet these criteria, so checking all of them to find the minimum outcome is quite fast. %C A380989 Example --> n=5 %C A380989 6 primes to the 1 power --> 6 distinct primes %C A380989 2*3*5*7*11*13 = 30030 %C A380989 7 primes to the 2 power -- disallowed (5 mod 2 = 1) %C A380989 8 primes to the 3 power -- disallowed (4 mod 3 = 1) %C A380989 9 primes to the 4 power -- disallowed (9 mod 4 = 1) %C A380989 10 primes to the 5 power --> 2 distinct primes %C A380989 2*2*2*2*2*3*3*3*3*3 = 7776 %C A380989 The minimum value is 7776 and thus a(5) = 7776. (End) %H A380989 David Consiglio, Jr., <a href="/A380989/b380989.txt">Table of n, a(n) for n = 0..100</a> %H A380989 David Consiglio, Jr., <a href="/A380989/a380989_2.py.txt">Python program</a> %e A380989 The terms together with their prime indices begin: %e A380989 1: {} %e A380989 6: {1,2} %e A380989 30: {1,2,3} %e A380989 210: {1,2,3,4} %e A380989 900: {1,1,2,2,3,3} %e A380989 7776: {1,1,1,1,1,2,2,2,2,2} %e A380989 27000: {1,1,1,2,2,2,3,3,3} %e A380989 279936: {1,1,1,1,1,1,1,2,2,2,2,2,2,2} %e A380989 810000: {1,1,1,1,2,2,2,2,3,3,3,3} %e A380989 9261000: {1,1,1,2,2,2,3,3,3,4,4,4} %t A380989 prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; %t A380989 q=Table[Total[prisig[n]]-Total[Union[prisig[n]]],{n,10000}]; %t A380989 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A380989 Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}] %Y A380989 Position of first appearance of n in A001222 - A136565. %Y A380989 For factors instead of exponents we have A280286 (sorted A381075), firsts of A280292. %Y A380989 For indices instead of exponents we have A380956 (sorted A380957), firsts of A380955. %Y A380989 A000040 lists the primes, differences A001223. %Y A380989 A005361 gives product of prime exponents. %Y A380989 A055396 gives least prime index, greatest A061395. %Y A380989 A056239 (reverse A296150) adds up prime indices, row sums of A112798. %Y A380989 A124010 lists prime exponents (signature); A001221, A051903, A051904. %Y A380989 Cf. A046660, A071625, A075254, A075255, A076694, A130091, A130092, A290106, A380986. %K A380989 nonn %O A380989 0,2 %A A380989 _Gus Wiseman_, Feb 18 2025 %E A380989 a(10)-a(11) from _Michel Marcus_, Feb 20 2025 %E A380989 a(12) and beyond from _David Consiglio, Jr._, Feb 20 2025