This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380993 #20 Feb 14 2025 11:14:05 %S A380993 1,2,2,1,3,6,9,9,6,3,6,12,21,27,30,24,18,9,3,10,20,38,55,74,81,80,69, %T A380993 53,34,17,8,1,15,30,60,93,138,174,210,216,219,195,165,120,84,48,27,9, %U A380993 3,21,42,87,141,222,303,405,480,546,579,588,552,498,414,324,240,162,99,54,27,9,3 %N A380993 Irregular triangular array read by rows. T(n,k) is the number of ternary words of length n containing at least one copy of each letter and having exactly k inversions, n>=3, 0<=k<=floor(n^2/3). %H A380993 Alois P. Heinz, <a href="/A380993/b380993.txt">Rows n = 3..50, flattened</a> %F A380993 Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/B(n) = (e(x)-1)^3 where B(n) = Product_{i=1..n} (q^i-1)/(q-1) and e(x) = Sum_{n>=0} x^n/B(n). %F A380993 Sum_{k=0..floor(n^2/3)} (-1)^k * T(n,k) = A056454(n). - _Alois P. Heinz_, Feb 12 2025 %e A380993 Triangle T(n,k) begins: %e A380993 1, 2, 2, 1; %e A380993 3, 6, 9, 9, 6, 3; %e A380993 6, 12, 21, 27, 30, 24, 18, 9, 3; %e A380993 10, 20, 38, 55, 74, 81, 80, 69, 53, 34, 17, 8, 1; %e A380993 ... %e A380993 T(4,2) = 9 because we have: {0, 1, 2, 0}, {0, 2, 0, 1}, {0, 2, 1, 1}, {0, 2, 2, 1}, {1, 0, 0, 2}, {1, 0, 2, 1}, {1, 1, 0, 2}, {1, 2, 0, 2}, {2, 0, 1, 2}. %p A380993 b:= proc(n, l) option remember; `if`(n=0, `if`(nops(subs(0= %p A380993 [][], l))=3, 1, 0), add(expand(x^([0, l[1], l[1]+l[2]][j])* %p A380993 b(n-1, subsop(j=`if`(j=3, 1, l[j]+1), l))), j=1..3)) %p A380993 end: %p A380993 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])): %p A380993 seq(T(n), n=3..10); # _Alois P. Heinz_, Feb 12 2025 %t A380993 nn = 8; B[n_] := FunctionExpand[QFactorial[n, u]]; %t A380993 e[z_] := Sum[z^n/B[n], {n, 0, nn}]; %t A380993 Drop[Map[CoefficientList[#, u] &, %t A380993 Map[Normal[Series[#, {u, 0, Binomial[nn, 2]}]] &, %t A380993 Table[B[n], {n, 0, nn}] CoefficientList[ %t A380993 Series[(e[z] - 1)^3, {z, 0, nn}], z]]], 3] // Grid %Y A380993 Cf. A056454, A129529, A001117 (row sums). %K A380993 nonn,tabf %O A380993 3,2 %A A380993 _Geoffrey Critzer_, Feb 11 2025