cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381014 If n = Product (p_j^k_j) then a(n) = Sum partition(p_j^k_j).

This page as a plain text file.
%I A381014 #15 Apr 17 2025 09:35:58
%S A381014 0,2,3,5,7,5,15,22,30,9,56,8,101,17,10,231,297,32,490,12,18,58,1255,
%T A381014 25,1958,103,3010,20,4565,12,6842,8349,59,299,22,35,21637,492,104,29,
%U A381014 44583,20,63261,61,37,1257,124754,234,173525,1960,300,106,329931,3012,63,37,493,4567,831820,15
%N A381014 If n = Product (p_j^k_j) then a(n) = Sum partition(p_j^k_j).
%F A381014 If n = Product (p_j^k_j) then a(n) = Sum A000041(p_j^k_j).
%t A381014 Join[{0}, Table[Plus @@ (PartitionsP[#[[1]]^#[[2]]] & /@ FactorInteger[n]), {n, 2, 60}]]
%o A381014 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, numbpart(f[k,1]^f[k,2])); \\ _Michel Marcus_, Apr 17 2025
%Y A381014 Cf. A000041, A008481.
%K A381014 nonn
%O A381014 1,2
%A A381014 _Ilya Gutkovskiy_, Apr 10 2025