This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381015 #21 Mar 02 2025 23:33:35 %S A381015 1,2,3,4,5,6,7,8,9,11,11,12,13,14,15,16,17,18,19,21,21,22,23,24,25,26, %T A381015 27,28,29,31,31,32,33,34,35,36,37,38,39,41,41,42,43,44,45,46,47,48,49, %U A381015 51,51,52,53,54,55,56,57,58,59,61,61,62,63,64,65,66,67,68,69,71,71,72,73,74,75,76,77 %N A381015 a(n) = n + (number of trailing 0's of n). %C A381015 Constant congruence speed of (10^n + 1)^n, i.e., a(n) = A373387((10^n + 1)^n). %C A381015 Since 10^n + 1 is never a perfect power by Catalan's conjecture (Mihăilescu's theorem), it follows that if 10 does not divide n, then (10^n + 1)^n is exactly an n-th perfect power with a constant congruence speed of a(n) = n. %C A381015 Moreover, for any positive integer n, the congruence speed of (10^n + 1)^n equals 2*a(n) at height 1 and then becomes stable at height 2. %H A381015 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/5031005/non-existence-of-perfect-powers-of-the-form-10n1-or-2-cdot-10n1">Non-existence of perfect powers of the form 10^n+1 or 2*10^n+1</a>. %H A381015 Marco Ripà, <a href="https://doi.org/10.59400/jam1771">On the relation between perfect powers and tetration frozen digits</a>, Journal of AppliedMath, 2024, 2(5), 1771, see Theorem 2. %H A381015 Wikipedia, <a href="https://en.wikipedia.org/wiki/Catalan%27s_conjecture">Catalan's_conjecture</a>. %F A381015 a(n) = n + A122840(n). %F A381015 a(n) = A373387(A121520(n)). %e A381015 a(10) = 11 since A373387((10^10 + 1)^10) = 11. %t A381015 a[n_]:=n+IntegerExponent[n,10]; Array[a,77] (* _Stefano Spezia_, Feb 13 2025 *) %o A381015 (PARI) a(n) = n + valuation(n, 10); \\ _Michel Marcus_, Feb 13 2025 %Y A381015 Cf. A121520, A122840, A317905, A372490, A373387, A379243. %K A381015 nonn,base,easy %O A381015 1,2 %A A381015 _Marco Ripà_, Feb 11 2025