This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381017 #13 May 28 2025 16:25:54 %S A381017 5,13,29,113,149,197,317,613,709,797,1009,1129,1373,3001,3209,3853, %T A381017 4513,5261,6361,7213,11681,12853,15373,16729,19577,20593,21101,22133, %U A381017 25997,30757,33317,38669,53077,56401,65101,68777,72533,73517,95093,100621,108637,114553,115781,118213 %N A381017 Prime terms of A000328. %C A381017 Called Gauss circle primes by Ehrenborg. %H A381017 Robert Israel, <a href="/A381017/b381017.txt">Table of n, a(n) for n = 1..1188</a> %H A381017 Thomas Ehrenborg, <a href="https://arxiv.org/abs/2502.06804">Gauss Circle Primes</a>, arXiv:2502.06804 [math.GM], 2025. See Table 1 p. 3. %p A381017 N:= 200: # for terms in A000328(1..N) %p A381017 V:= Array(0..N): V[0]:= 1: %p A381017 for x from 1 to N do %p A381017 for y from 0 to x do %p A381017 if y = 0 or y = x then m:= 4 else m:= 8 fi; %p A381017 s:= ceil(sqrt(x^2+y^2)); %p A381017 if s > N then break fi; %p A381017 V[s]:= V[s] + m %p A381017 od od: %p A381017 select(isprime, ListTools:-PartialSums(convert(V,list))); # _Robert Israel_, May 27 2025 %o A381017 (PARI) select(isprime, vector(200, n, 1 + 4*sum(j=0, n^2\4, n^2\(4*j+1) - n^2\(4*j+3)))) %Y A381017 Cf. A000040, A000328, A381018. %K A381017 nonn %O A381017 1,1 %A A381017 _Michel Marcus_, Feb 12 2025