cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381025 Expansion of e.g.f. -log(1-x)^3 * exp(x) / (6 * (1-x)).

This page as a plain text file.
%I A381025 #13 Feb 12 2025 16:46:27
%S A381025 0,0,0,1,14,145,1415,14084,147532,1646714,19664350,251282911,
%T A381025 3430766658,49928212971,772465487885,12671188958674,219793939324536,
%U A381025 4021442067435092,77425990864146652,1565193235764750557,33153390461212914806,734397759275046673253,16982466756411641668051
%N A381025 Expansion of e.g.f. -log(1-x)^3 * exp(x) / (6 * (1-x)).
%F A381025 a(n) = Sum_{k=0..n} binomial(n,k) * |Stirling1(k+1,4)|.
%F A381025 a(n) = A381023(n+1) - A381023(n).
%t A381025 nmax=22; CoefficientList[Series[-Log[1-x]^3*Exp[x]/(6*(1-x)),{x,0,nmax}],x]Range[0,nmax]! (* _Stefano Spezia_, Feb 12 2025 *)
%o A381025 (PARI) a(n) = sum(k=0, n, binomial(n, k)*abs(stirling(k+1, 4, 1)));
%Y A381025 Column k=4 of A269951 (with a different offset).
%Y A381025 Cf. A381023.
%K A381025 nonn
%O A381025 0,5
%A A381025 _Seiichi Manyama_, Feb 12 2025