This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381030 #21 Feb 16 2025 10:26:35 %S A381030 1,2,2,2,4,5,3,11,20,12,3,17,60,68,35,4,32,151,302,289,108,4,45,322, %T A381030 955,1523,1151,369,5,71,633,2617,5942,7384,4792,1285,5,94,1132,6179, %U A381030 19061,33819,35188,19603,4655,6,134,1930,13374,52966,125940,184938,164036,80820,17073,6,170,3095,26567,131717,400119,778318,969972 %N A381030 Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes. %C A381030 (n,k)-polyominoes are disconnected polyominoes with n visible squares and k transparent squares. Importantly, k must be the least number of transparent squares that need to be converted to visible squares to make all the visible squares connected. Note that a regular polyomino of order n is a (n,0)-polyomino, since all its visible squares are already connected. For more details see the paper by Kamenetsky and Cooke. %C A381030 Note that, in this sequence, 2 different sets of the same number of transparent squares that connect in distinct ways the same set of visible squares, count as 1. E.g. these 2 different formations count as 1: %C A381030 XO XOO %C A381030 OX X %H A381030 Dmitry Kamenetsky and Tristrom Cooke, <a href="https://arxiv.org/abs/1411.2699">Tiling rectangles with holey polyominoes</a>, arXiv:1411.2699 [cs.CG], 2015. %F A381030 First row, a(2,k) = floor((k+3)/2). %e A381030 The table begins as follows: %e A381030 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A381030 ---+------------------------------------------------------------------ %e A381030 2| 1 2 2 3 3 4 4 5 5 6 6 %e A381030 3| 2 4 11 17 32 45 71 94 134 170 %e A381030 4| 5 20 60 151 322 633 1132 1930 3095 %e A381030 5| 12 68 302 955 2617 6179 13374 26567 %e A381030 6| 35 289 1523 5942 19061 52966 131717 %e A381030 7| 108 1151 7384 33819 125940 400119 %e A381030 8| 369 4792 35188 184938 778318 %e A381030 9| 1285 19603 164036 969972 %e A381030 10| 4655 80820 753310 %e A381030 11| 17073 331373 %e A381030 12| 63600 %Y A381030 Cf. A381057. %Y A381030 Columns 0..4: A000105, A286344, A286194, A286345. %K A381030 nonn,tabl %O A381030 2,2 %A A381030 _John Mason_, Feb 12 2025