cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381035 Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is 1.

This page as a plain text file.
%I A381035 #12 Feb 18 2025 19:02:07
%S A381035 1,2,3,5,6,7,8,9,11,13,14,15,17,19,20,21,23,25,26,27,29,30,31,32,33,
%T A381035 35,36,37,38,39,41,43,44,45,47,49,50,51,53,55,56,57,59,61,62,63,65,66,
%U A381035 67,68,69,71,73,74,75,77,79,80,81,83,85,86,87,89,91,92,93,95,96,97,98,99,101,103,104,105,107,109,110,111
%N A381035 Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is 1.
%C A381035 Numbers k such that A327860(k) is not a multiple of A053669(k), where A327860 is the arithmetic derivative of the primorial base exp-function, and A053669(k) gives the least prime not dividing k.
%C A381035 The asymptotic density of this sequence is 0.70523017... (A064648). - _Amiram Eldar_, Feb 17 2025
%H A381035 Antti Karttunen, <a href="/A381035/b381035.txt">Table of n, a(n) for n = 1..20000</a>
%H A381035 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>.
%F A381035 {k such that A276088(k) = 1}.
%e A381035    n, A049345(n), A276088(n)
%e A381035   ---------------------------------------------
%e A381035    4       20       2, thus 4 is not present,
%e A381035   11      121       1, thus 11 is present,
%e A381035   14      210       1, thus 14 is present.
%t A381035 q[n_] := Module[{k = n, p = 2, r}, While[{k, r} = QuotientRemainder[k, p]; k > 0 && r == 0, p = NextPrime[p]]; r == 1]; Select[Range[120], q] (* _Amiram Eldar_, Feb 17 2025 *)
%o A381035 (PARI)
%o A381035 A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
%o A381035 is_A381035(n) = (1==A276088(n));
%Y A381035 Complement of A380535 (apart from 0 which is in neither).
%Y A381035 Cf. A049345, A064648, A276088, A380534.
%Y A381035 Subsequences: A276156, A290249, A381034.
%K A381035 nonn,base,easy
%O A381035 1,2
%A A381035 _Antti Karttunen_, Feb 17 2025