This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381035 #12 Feb 18 2025 19:02:07 %S A381035 1,2,3,5,6,7,8,9,11,13,14,15,17,19,20,21,23,25,26,27,29,30,31,32,33, %T A381035 35,36,37,38,39,41,43,44,45,47,49,50,51,53,55,56,57,59,61,62,63,65,66, %U A381035 67,68,69,71,73,74,75,77,79,80,81,83,85,86,87,89,91,92,93,95,96,97,98,99,101,103,104,105,107,109,110,111 %N A381035 Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is 1. %C A381035 Numbers k such that A327860(k) is not a multiple of A053669(k), where A327860 is the arithmetic derivative of the primorial base exp-function, and A053669(k) gives the least prime not dividing k. %C A381035 The asymptotic density of this sequence is 0.70523017... (A064648). - _Amiram Eldar_, Feb 17 2025 %H A381035 Antti Karttunen, <a href="/A381035/b381035.txt">Table of n, a(n) for n = 1..20000</a> %H A381035 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>. %F A381035 {k such that A276088(k) = 1}. %e A381035 n, A049345(n), A276088(n) %e A381035 --------------------------------------------- %e A381035 4 20 2, thus 4 is not present, %e A381035 11 121 1, thus 11 is present, %e A381035 14 210 1, thus 14 is present. %t A381035 q[n_] := Module[{k = n, p = 2, r}, While[{k, r} = QuotientRemainder[k, p]; k > 0 && r == 0, p = NextPrime[p]]; r == 1]; Select[Range[120], q] (* _Amiram Eldar_, Feb 17 2025 *) %o A381035 (PARI) %o A381035 A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); }; %o A381035 is_A381035(n) = (1==A276088(n)); %Y A381035 Complement of A380535 (apart from 0 which is in neither). %Y A381035 Cf. A049345, A064648, A276088, A380534. %Y A381035 Subsequences: A276156, A290249, A381034. %K A381035 nonn,base,easy %O A381035 1,2 %A A381035 _Antti Karttunen_, Feb 17 2025