This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381057 #18 Feb 16 2025 10:26:25 %S A381057 1,2,2,3,5,5,6,17,24,12,10,41,101,89,35,20,106,353,535,382,108,36,243, %T A381057 1091,2355,2769,1566,369,72,567,3095,8937,14841,13739,6569,1285,136, %U A381057 1259,8209,29744,65651,86322,66499,27205,4655,272,2806,20804,90914,252277,439879,479343,314445,112886,17073,528,6113,50801,259078,872526 %N A381057 Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes counting as distinct different formations of transparent squares. %C A381057 (n,k)-polyominoes are disconnected polyominoes with n visible squares and k transparent squares. Importantly, k must be the least number of transparent squares that need to be converted to visible squares to make all the visible squares connected. Note that a regular polyomino of order n is a (n,0)-polyomino, since all its visible squares are already connected. For more details see the paper by Kamenetsky and Cooke. %C A381057 Note that, in this sequence, different sets of the same number of transparent squares that connect in distinct ways the same set of visible squares, are counted separately. E.g. these 2 different formations count as 2: %C A381057 XO XOO %C A381057 OX X %H A381057 Dmitry Kamenetsky and Tristrom Cooke, <a href="https://arxiv.org/abs/1411.2699">Tiling rectangles with holey polyominoes</a>, arXiv:1411.2699 [cs.CG], 2015. %e A381057 The table begins as follows: %e A381057 n\k| 0 1 2 3 4 5 6 7 8 9 10 %e A381057 --+-------------------------------------------------------------------------- %e A381057 2| 1 2 3 6 10 20 36 72 136 272 528 %e A381057 3| 2 5 17 41 106 243 567 1259 2806 6113 %e A381057 4| 5 24 101 353 1091 3095 8209 20804 50801 %e A381057 5| 12 89 535 2355 8937 29744 90914 259078 %e A381057 6| 35 382 2769 14841 65651 252277 872526 %e A381057 7| 108 1566 13739 86322 439879 1917387 %e A381057 8| 369 6569 66499 479343 2759969 %e A381057 9| 1285 27205 314445 2555903 %e A381057 10| 4655 112886 1461335 %e A381057 11| 17073 466178 %e A381057 12| 63600 %Y A381057 Row 2 gives A005418. %Y A381057 Column 0 gives A000105. %Y A381057 Cf. A381030. %K A381057 nonn,tabl %O A381057 2,2 %A A381057 _John Mason_, Feb 12 2025