cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381061 First of six consecutive primes such that sum of any five terms is prime.

This page as a plain text file.
%I A381061 #18 Feb 15 2025 09:47:03
%S A381061 9733,970217,3218471,5241937,5691893,8445251,8788079,11268497,
%T A381061 11881901,16697419,19604623,22057961,22926473,26027723,26939197,
%U A381061 38187463,38938153,39901963,45190247,52489691,54887597,58296113,61909753,62686369,68142289,69567359,69799033,72085687,72973723,79517741,82464511
%N A381061 First of six consecutive primes such that sum of any five terms is prime.
%H A381061 Michael S. Branicky, <a href="/A381061/b381061.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..500 from _Robert Israel_)
%e A381061 a(2) = 970217 is a term because 970217, 970219, 970231, 970237, 970247, 970259 are six consecutive primes such that the sums of five of the six are
%e A381061     970217 + 970219 + 970231 + 970237 + 970247 = 4851151
%e A381061     970217 + 970219 + 970231 + 970237 + 970259 = 4851163
%e A381061     970217 + 970219 + 970231 + 970247 + 970259 = 4851173
%e A381061     970217 + 970219 + 970237 + 970247 + 970259 = 4851179
%e A381061     970217 + 970231 + 970237 + 970247 + 970259 = 4851191
%e A381061     970219 + 970231 + 970237 + 970247 + 970259 = 4851193
%e A381061 which are all prime.
%p A381061 P:= [2,3,5,7,11,13]: S:= convert(P,`+`);
%p A381061 R:= NULL: count:= 0:
%p A381061 while count < 40 do
%p A381061   p:= nextprime(P[6]);
%p A381061   S:= S + p - P[1];
%p A381061   P:= [op(P[2..6]),p];
%p A381061   if andmap(t -> isprime(S-t), P) then
%p A381061     R:= R,P[1]; count:= count+1;
%p A381061   fi
%p A381061 od:
%p A381061 R;
%o A381061 (Python)
%o A381061 from sympy import isprime, nextprime
%o A381061 from itertools import combinations, islice
%o A381061 def agen(): # generator of terms
%o A381061     P = [2, 3, 5, 7, 11, 13]
%o A381061     while True:
%o A381061         if all(isprime(sum(c)) for c in combinations(P, 5)):
%o A381061             yield P[0]
%o A381061         P = P[1:] + [nextprime(P[-1])]
%o A381061 print(list(islice(agen(), 7))) # _Michael S. Branicky_, Feb 12 2025
%Y A381061 Cf. A298763, A381062.
%K A381061 nonn
%O A381061 1,1
%A A381061 _Zak Seidov_ and _Robert Israel_, Feb 12 2025