cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381067 Expansion of e.g.f. log(1-x)^2 * exp(-x) / (2 * (1-x)).

This page as a plain text file.
%I A381067 #9 Feb 13 2025 02:26:47
%S A381067 0,0,1,3,17,100,694,5453,48082,470328,5057331,59313287,753695139,
%T A381067 10316991100,151373235896,2370151632977,39450142911652,
%U A381067 695612154233648,12953591498092101,254044853932550091,5234026736314790581,113025076301648693844,2552830193825115461786
%N A381067 Expansion of e.g.f. log(1-x)^2 * exp(-x) / (2 * (1-x)).
%F A381067 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * |Stirling1(k+1,3)|.
%F A381067 a(n) = A381065(n) + A381065(n+1).
%o A381067 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*abs(stirling(k+1, 3, 1)));
%Y A381067 Column k=3 of A269954 (with a different offset).
%Y A381067 Cf. A016269, A381024, A381065.
%K A381067 nonn
%O A381067 0,4
%A A381067 _Seiichi Manyama_, Feb 12 2025