cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).

This page as a plain text file.
%I A381075 #11 Apr 15 2025 08:25:33
%S A381075 1,4,8,9,16,25,32,49,64,81,121,128,169,256,289,361,512,529,625,841,
%T A381075 961,1024,1331,1369,1444,1681,1849,2048,2116,2197,2209,2809,3481,3721,
%U A381075 3844,4232,4489,4913,5041,5324,5329,5476,6241,6859,6889,7396,7569,7688,7921
%N A381075 Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors).
%H A381075 Michel Marcus, <a href="/A381075/b381075.txt">Table of n, a(n) for n = 1..391</a>
%F A381075 Sorted positions of first appearances in A001414 - A008472.
%e A381075 The initial terms of A280292 are (0,0,0,2,0,0,0,4,3,0,0,2,0,0,0,6,0,3,0,2,0,0,0,4,5,0,6,2,...), wherein a value appears for the first time at positions 1, 4, 8, 9, 16, 25, ...
%t A381075 prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]];
%t A381075 q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,10000}];
%t A381075 Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
%o A381075 (PARI) f(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2] - f[j, 1]); \\ A280292
%o A381075 lista(nn) = my(v=Set(vector(nn, i, f(i))), list=List()); for (i=1, #v, my(k=1); while(f(k) != v[i], k++); listput(list, k)); vecsort(Vec(list)); \\ _Michel Marcus_, Apr 15 2025
%Y A381075 For length instead of sum we have A151821.
%Y A381075 The unsorted version is A280286, firsts of A280292.
%Y A381075 For indices instead of factors we have A380957 (unsorted A380956), firsts of A380955.
%Y A381075 A multiplicative version is A380988 (unsorted A380987), firsts of A290106.
%Y A381075 For prime multiplicities instead of factors see A380989, firsts of A380958.
%Y A381075 For product instead of sum we have A381076, sorted firsts of A066503.
%Y A381075 A000040 lists the primes, differences A001223.
%Y A381075 A005117 lists squarefree numbers, complement A013929.
%Y A381075 A055396 gives least prime index, greatest A061395.
%Y A381075 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A381075 A364916 counts partitions by (sum minus sum of distinct parts).
%Y A381075 Cf. A000720, A001414, A008472, A046660, A071625, A075255, A116861, A136565, A156061, A178503, A175508, A366528.
%K A381075 nonn
%O A381075 1,2
%A A381075 _Gus Wiseman_, Feb 18 2025