This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381077 #5 Feb 22 2025 09:56:39 %S A381077 1,9,25,49,63,81,99,121,125,135,169,171,245,279,289,343,361,363,369, %T A381077 375,387,477,529,531,575,603,625,675,711,729,747,833,841,847,873,875, %U A381077 891,909,961,981,1029,1083,1125,1127,1179,1225,1251,1377,1413,1445,1467 %N A381077 Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices). %C A381077 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A position of first appearance in a sequence q is an index k such that q(k) is different from q(j) for all j < k. %C A381077 All terms are odd. %e A381077 The terms together with their prime indices begin: %e A381077 1: {} %e A381077 9: {2,2} %e A381077 25: {3,3} %e A381077 49: {4,4} %e A381077 63: {2,2,4} %e A381077 81: {2,2,2,2} %e A381077 99: {2,2,5} %e A381077 121: {5,5} %e A381077 125: {3,3,3} %e A381077 135: {2,2,2,3} %e A381077 169: {6,6} %e A381077 171: {2,2,8} %e A381077 245: {3,4,4} %e A381077 279: {2,2,11} %t A381077 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381077 q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}]; %t A381077 Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&] %Y A381077 For length instead of product we have A151821, firsts of A046660. %Y A381077 For factors instead of indices we have A381076, sorted firsts of A066503. %Y A381077 For sum of factors instead of product of indices we have A381075 (unsorted A280286), A280292. %Y A381077 For quotient instead of difference we have A380988 (unsorted A380987), firsts of A290106. %Y A381077 For quotient and factors we have A001694 (unsorted A064549), firsts of A003557. %Y A381077 For sum instead of product we have A380957 (unsorted A380956), firsts of A380955. %Y A381077 Sorted firsts of A380986, which has nonzero terms at positions A038838. %Y A381077 A000040 lists the primes, differences A001223. %Y A381077 A003963 gives product of prime indices, distinct A156061. %Y A381077 A005117 lists the squarefree numbers, complement A013929. %Y A381077 A007947 gives squarefree kernel. %Y A381077 A055396 gives least prime index, greatest A061395. %Y A381077 A056239 adds up prime indices, row sums of A112798, length A001222. %Y A381077 A304038 lists distinct prime indices, sum A066328, length A001221. %Y A381077 Cf. A000079, A000720, A001222, A081770, A075255, A116861, A178503, A374248, A379681, A380958. %K A381077 nonn %O A381077 1,2 %A A381077 _Gus Wiseman_, Feb 20 2025