cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381077 Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).

This page as a plain text file.
%I A381077 #5 Feb 22 2025 09:56:39
%S A381077 1,9,25,49,63,81,99,121,125,135,169,171,245,279,289,343,361,363,369,
%T A381077 375,387,477,529,531,575,603,625,675,711,729,747,833,841,847,873,875,
%U A381077 891,909,961,981,1029,1083,1125,1127,1179,1225,1251,1377,1413,1445,1467
%N A381077 Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices).
%C A381077 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A position of first appearance in a sequence q is an index k such that q(k) is different from q(j) for all j < k.
%C A381077 All terms are odd.
%e A381077 The terms together with their prime indices begin:
%e A381077      1: {}
%e A381077      9: {2,2}
%e A381077     25: {3,3}
%e A381077     49: {4,4}
%e A381077     63: {2,2,4}
%e A381077     81: {2,2,2,2}
%e A381077     99: {2,2,5}
%e A381077    121: {5,5}
%e A381077    125: {3,3,3}
%e A381077    135: {2,2,2,3}
%e A381077    169: {6,6}
%e A381077    171: {2,2,8}
%e A381077    245: {3,4,4}
%e A381077    279: {2,2,11}
%t A381077 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381077 q=Table[Times@@prix[n]-Times@@Union[prix[n]],{n,10000}];
%t A381077 Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
%Y A381077 For length instead of product we have A151821, firsts of A046660.
%Y A381077 For factors instead of indices we have A381076, sorted firsts of A066503.
%Y A381077 For sum of factors instead of product of indices we have A381075 (unsorted A280286), A280292.
%Y A381077 For quotient instead of difference we have A380988 (unsorted A380987), firsts of A290106.
%Y A381077 For quotient and factors we have A001694 (unsorted A064549), firsts of A003557.
%Y A381077 For sum instead of product we have A380957 (unsorted A380956), firsts of A380955.
%Y A381077 Sorted firsts of A380986, which has nonzero terms at positions A038838.
%Y A381077 A000040 lists the primes, differences A001223.
%Y A381077 A003963 gives product of prime indices, distinct A156061.
%Y A381077 A005117 lists the squarefree numbers, complement A013929.
%Y A381077 A007947 gives squarefree kernel.
%Y A381077 A055396 gives least prime index, greatest A061395.
%Y A381077 A056239 adds up prime indices, row sums of A112798, length A001222.
%Y A381077 A304038 lists distinct prime indices, sum A066328, length A001221.
%Y A381077 Cf. A000079, A000720, A001222, A081770, A075255, A116861, A178503, A374248, A379681, A380958.
%K A381077 nonn
%O A381077 1,2
%A A381077 _Gus Wiseman_, Feb 20 2025