cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381078 Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.

This page as a plain text file.
%I A381078 #13 Apr 01 2025 12:16:12
%S A381078 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,5,1,1,2,2,
%T A381078 2,3,1,2,2,2,1,5,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,6,1,2,2,1,2,5,1,2,
%U A381078 2,5,1,3,1,2,2,2,2,5,1,2,1,2,1,6,2,2,2
%N A381078 Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.
%C A381078 First differs from A050320 at a(210) = 13, A050320(210) = 15. This comes from the set multipartitions {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
%C A381078 Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1.
%C A381078 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A381078 A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
%C A381078 Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.
%H A381078 Robert Price, <a href="/A381078/b381078.txt">Table of n, a(n) for n = 1..1000</a>
%F A381078 a(A002110(n)) = A066723(n).
%e A381078 The prime indices of 60 are {1,1,2,3}, with set multipartitions:
%e A381078   {{1},{1,2,3}}
%e A381078   {{1,2},{1,3}}
%e A381078   {{1},{1},{2,3}}
%e A381078   {{1},{2},{1,3}}
%e A381078   {{1},{3},{1,2}}
%e A381078   {{1},{1},{2},{3}}
%e A381078 with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
%t A381078 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
%t A381078 sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
%t A381078 Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
%Y A381078 Before taking sums we had A050320, strict A050326 (zeros A293243), distinct sums A381633.
%Y A381078 For distinct blocks we have A381441.
%Y A381078 The lower version is A381454.
%Y A381078 For distinct block-sums we have A381634.
%Y A381078 Other multiset partitions of prime indices:
%Y A381078 - For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
%Y A381078 - For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
%Y A381078 - For strict multiset partitions (A045778) see A381452.
%Y A381078 - For sets of constant multisets (A050361) see A381717.
%Y A381078 - For strict multiset partitions with distinct sums (A321469) see A381637.
%Y A381078 - For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
%Y A381078 More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
%Y A381078 A000041 counts integer partitions, strict A000009.
%Y A381078 A000040 lists the primes.
%Y A381078 A003963 gives product of prime indices.
%Y A381078 A055396 gives least prime index, greatest A061395.
%Y A381078 A056239 adds up prime indices, row sums of A112798.
%Y A381078 A122111 represents conjugation in terms of Heinz numbers.
%Y A381078 A265947 counts refinement-ordered pairs of integer partitions.
%Y A381078 Cf. A000720, A001222, A002846, A005117, A025487, A066328, A213242, A213385, A213427, A299201, A299202, A300385.
%K A381078 nonn
%O A381078 1,6
%A A381078 _Gus Wiseman_, Mar 05 2025