A381082 Triangle T(n,k) read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=2.
1, -2, 1, 4, -3, 1, -8, 8, -3, 1, 16, -18, 11, -2, 1, -32, 44, -20, 15, 0, 1, 64, -80, 94, 5, 25, 3, 1, -128, 272, 56, 294, 105, 49, 7, 1, 256, 112, 1868, 1596, 1169, 392, 98, 12, 1, -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] -2, 1; [2] 4, -3, 1; [3] -8, 8, -3, 1; [4] 16, -18, 11, -2, 1; [5] -32, 44, -20, 15, 0, 1; [6] 64, -80, 94, 5, 25, 3, 1; [7] -128, 272, 56, 294, 105, 49, 7, 1; [8] 256, 112, 1868, 1596, 1169, 392, 98, 12, 1; [9] -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1; ...
Crossrefs
Programs
-
Maple
T:=(m,n,k)->add(Stirling1(n-i,k)*binomial(n,i)*m^(i)*(-1)^(n-k), i=0..n): m:=2:seq(print(seq(T(m,n,k), k=0..n)), n=0..9);
Formula
T(n,k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), where m = 2.