This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381094 #12 Mar 03 2025 13:22:27 %S A381094 0,0,0,0,0,2,3,4,0,6,6,2,4,5,6,8,0,2,3,4,8,9,10,0,2,4,6,7,8,10,12,3,5, %T A381094 6,9,10,12,6,10,12,14,0,2,3,4,8,9,10,14,15,16,0,2,4,5,6,8,12,14,15,16, %U A381094 18,3,6,7,9,12,14,15,18,2,4,6,8,10,11,12,14,16,18,20 %N A381094 Triangle read by rows where row n contains k < n that are neither coprime to n nor have the same squarefree kernel as n, or 0 if there are no such k. %C A381094 Let rad(k) = A007947(k), the squarefree kernel of k. %C A381094 Let T(n) be row n of this sequence and let S(n) be row n of A133995. %C A381094 T(n) contains numbers k < n such that k and n share at least one prime factor p, but not all distinct prime p | n. %C A381094 T(n) is a superset of S(n), since S(n) does not contain any divisor d | n, while T(n) allows d | n such that rad(d) != rad(n). %H A381094 Michael De Vlieger, <a href="/A381094/b381094.txt">Table of n, a(n) for n = 1..11873</a> (rows n = 1..250, flattened) %F A381094 T(n) = { k < n : 1 < gcd(k,n), rad(k) != rad(n) }. %F A381094 T(n) = S(n) \ { k : k | n, rad(k) = rad(n) }. %F A381094 For prime p, T(p) = {}, but we write 0 to signify the empty set. %F A381094 T(4) = 0, since k < 4 is either coprime to 4 or rad(k) = 2. %F A381094 Let U(n) be row n of A121998 and let R(n) be row n of A369609. T(n) = U(n) \ R(n). - _Michael De Vlieger_, Mar 03 2025 %e A381094 Table begins: %e A381094 n row n %e A381094 --------------------------- %e A381094 1: 0; %e A381094 2: 0; %e A381094 3: 0; %e A381094 4: 0; %e A381094 5: 0; %e A381094 6: 2, 3, 4; %e A381094 7: 0; %e A381094 8: 6; %e A381094 9: 6; %e A381094 10: 2, 4, 5, 6, 8; %e A381094 11: 0; %e A381094 12: 2, 3, 4, 8, 9, 10; %e A381094 13: 0; %e A381094 14: 2, 4, 6, 7, 8, 10, 12; %e A381094 15: 3, 5, 6, 9, 10, 12; %e A381094 16: 6, 10, 12, 14; %e A381094 From _Michael De Vlieger_, Mar 03 2025: (Start) %e A381094 Row 10 is the union of {2, 4, 6, 8, 10} and {5, 10} without 10. %e A381094 Row 12 is the union of {2, 4, 6, 8, 10, 12} and {3, 6, 9, 12} without {6, 12}. %e A381094 Row 30 is the union of {2, 4, ..., 30}, {3, 6, ..., 30}, and {5, 10, ..., 30} without 30. %e A381094 Row 84 is the union of {2, 4, ..., 84}, {3, 6, ..., 84}, and {7, 14, ..., 84} without {42, 84}, etc. (End) %t A381094 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}] %Y A381094 Cf. A007947, A121998, A133995, A369609, A381096. %K A381094 nonn,tabf,easy %O A381094 1,6 %A A381094 _Michael De Vlieger_, Feb 14 2025