This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381095 #15 Apr 01 2025 03:28:20 %S A381095 7,13,30,55,178,468,541,854,1454,2099,3744,7330,9091,10138,11917, %T A381095 14154,14350,19363,21555,23553,26615,36109,36533,37302,51588,52576, %U A381095 57183,58064,58144,63067,69927,70135,80174,81920,85923,89936,93749,99240,121884,124693,151411 %N A381095 Indices of prime squares in A381019. %C A381095 Let S = A381019. %C A381095 Observation: S(n) < n for S(n) = prime(i)^2 for some i. %e A381095 Table listing n and S(n), where i = pi(sqrt(S(n))) and S = A381019. Asterisks denote confirmed S(n) = prime(i)^2 coprime to P(r)/prime(i), where P = A002110 and r, the index of the largest prime in S(1..n-1). %e A381095 n i S(n) %e A381095 -------------------------- %e A381095 7 1 2^2 = 4 * %e A381095 13 2 3^2 = 9 * %e A381095 30 3 5^2 = 25 * %e A381095 55 4 7^2 = 49 * %e A381095 178 6 13^2 = 169 * %e A381095 468 5 11^2 = 121 %e A381095 541 9 23^2 = 529 * %e A381095 854 10 29^2 = 841 * %e A381095 1454 7 17^2 = 289 %e A381095 2099 8 19^2 = 361 %e A381095 3744 18 61^2 = 3721 * %e A381095 7330 11 31^2 = 961 %e A381095 9091 12 37^2 = 1369 %e A381095 10138 13 41^2 = 1681 %e A381095 11917 29 109^2 = 11881 %e A381095 14154 14 43^2 = 1849 %e A381095 14350 15 47^2 = 2209 %e A381095 19363 34 139^2 = 19321 %e A381095 21555 16 53^2 = 2809 %e A381095 23553 17 59^2 = 3481 %e A381095 26615 38 163^2 = 26569 %e A381095 36109 21 73^2 = 5329 %e A381095 36533 43 191^2 = 36481 %e A381095 37302 44 193^2 = 37249 %e A381095 51588 49 227^2 = 51529 %e A381095 52576 20 71^2 = 5041 %e A381095 57183 52 239^2 = 57121 %e A381095 58064 19 67^2 = 4489 %e A381095 58144 53 241^2 = 58081 %e A381095 63067 54 251^2 = 63001 %t A381095 s = {1}; nn = 4000; r = 1; u = v = 2; c[_] = False; %t A381095 MapIndexed[Set[{a[First[#2]], c[#1]}, {#1, True}] &, s]; %t A381095 While[c[u], u++]; While[Or[c[v], CompositeQ[v]], v++]; %t A381095 Monitor[Reap[ %t A381095 Do[k = u; q = Product[a[h], {h, n - Min[k, n - 1], n - 1}]; %t A381095 While[Or[c[k], ! CoprimeQ[k, q]], %t A381095 If[k > n - 1, k = v; q = Product[a[i], {i, r}], %t A381095 k++; q *= a[n - k] ] ]; %t A381095 Set[{a[n], c[k]}, {k, True}]; %t A381095 If[And[PrimeQ[k], # > r], r = #] &[PrimePi[k]]; %t A381095 If[PrimeQ@ Sqrt[k], Sow[n]]; %t A381095 If[k == u, While[c[u], u++]]; %t A381095 If[k == v, While[Or[c[v], CompositeQ[v]], v++]], %t A381095 {n, Length[s] + 1, nn}] ][[-1, 1]], n] %Y A381095 Cf. A001248, A381019, A381116, A381119. %K A381095 nonn %O A381095 1,1 %A A381095 _Michael De Vlieger_, Feb 16 2025 %E A381095 More terms from _Jinyuan Wang_, Feb 25 2025