This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381097 #19 Feb 26 2025 09:04:18 %S A381097 2,3,4,5,7,9,11,12,13,16,17,19,23,24,25,29,30,31,36,37,40,41,43,45,47, %T A381097 48,49,53,56,59,60,61,63,64,67,70,71,72,73,79,80,81,83,84,89,90,96,97, %U A381097 101,103,105,107,108,109,112,113,120,121,126,127,131,132,135 %N A381097 Consider the polynomial P(m,z) = Sum_{i=1..k} d(i)*z^(i-1) where d(1), d(2), ..., d(k) are the k divisors of m. The sequence lists the numbers m such that P(m,z) is irreducible. %C A381097 The squares>1 and the prime numbers are in the sequence. %e A381097 The prime numbers q are in the sequence because P(q,z) = qz + 1. %e A381097 6 is not in the sequence because P(6,z)=(2z+1)*(3z^2+1). %e A381097 The following table gives the irreducible polynomials. %e A381097 +-----------------------------------------------------------+ %e A381097 | m | P(m,z) | %e A381097 +-----------------------------------------------------------+ %e A381097 | 4 | 1 + 2z + 4z^2 | %e A381097 +-----------------------------------------------------------+ %e A381097 | 9 | 1 + 3z + 9z^2 | %e A381097 +-----------------------------------------------------------+ %e A381097 | 12 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 12z^5 | %e A381097 +-----------------------------------------------------------+ %e A381097 | 16 | 1 + 2z + 4z^2 + 8z^3 + 16z^4 | %e A381097 +----------------------------+------------------------------+ %e A381097 | 24 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 8z^5 + 12z^6 + 24z^7 | %e A381097 +-----------------------------------------------------------+ %e A381097 | 25 | 1 + 5z + 25z^2 | %e A381097 +-----------------------------------------------------------+ %e A381097 | 30 | 1 + 2z + 3z^2 + 5z^3 + 6z^4 + 10z^5 + 15z^6 + 30z^7 | %e A381097 +-----------------------------------------------------------+ %p A381097 with(numtheory): %p A381097 for n from 1 to 135 do : %p A381097 it:=0:d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)): %p A381097 y:=fsolve(P,x,complex):z:=evalf({%}):k:=nops(z): %p A381097 if irreduc(P) then printf(`%d, `,n):else fi: %p A381097 od: %o A381097 (PARI) isok(n) = my(d=divisors(n)); polisirreducible(sum(i=1, #d, d[i]*z^(i-1))); \\ _Michel Marcus_, Feb 14 2025 %Y A381097 Cf. A291127. %K A381097 nonn %O A381097 1,1 %A A381097 _Michel Lagneau_, Feb 14 2025