A381100 Number of integer triples i <= j <= k such that a non-degenerate triangle with sides (i, j, k) fits inside an equilateral triangle with sides (n, n, n), possibly touching its boundary from inside.
1, 2, 5, 10, 18, 29, 44, 62, 82, 109, 141, 180, 226, 279, 339, 403, 475, 557, 651, 755, 870, 993, 1125, 1269, 1425, 1595, 1780, 1976, 2188, 2417, 2652, 2905, 3173, 3461, 3769, 4090, 4436, 4788, 5161, 5558, 5968, 6405, 6857, 7340, 7840, 8355, 8893, 9463, 10048
Offset: 1
Examples
For n = 2, triangles (1, 1, 1) and (2, 2, 2) can fit inside (2, 2, 2), so a(2) = 2.
Links
- K. A. Post, Triangle in a triangle: On a problem of Steinhaus. Geom Dedicata 45, 115-120 (1993).
Crossrefs
Cf. A331250.
Programs
-
Mathematica
ClearAll[checkOnce, triangleInTriangleQ, a]; checkOnce[{a_, b_, c_}, {p_, q_, r_}] := With[{d = (a + b - c) (a - b + c) (-a + b + c) (a + b + c), s = (p + q - r) (p - q + r) (-p + q + r) (p + q + r), u = p^2 + q^2 - r^2, v = p^2 - q^2 + r^2}, p <= a && a^2 s <= d p^2 && u v >= 0 && s (a^2 - b^2 + c^2)^2 <= d (2 a p - u)^2 && s (a^2 + b^2 - c^2)^2 <= d (2 a p - v)^2]; triangleInTriangleQ[a_, b_, c_, p_, q_, r_] := Or @@ Flatten[Table[checkOnce[abc, pqr], {abc, {{a, b, c}, {b, c, a}, {c, a, b}}}, {pqr, Permutations[{p, q, r}]}]]; a[n_] := Total[Flatten[Table[Boole[triangleInTriangleQ[n, n, n, p, q, r]], {p, n}, {q, p}, {r, p - q + 1, q}]]]; Table[a[n], {n, 1, 49}]