cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381100 Number of integer triples i <= j <= k such that a non-degenerate triangle with sides (i, j, k) fits inside an equilateral triangle with sides (n, n, n), possibly touching its boundary from inside.

Original entry on oeis.org

1, 2, 5, 10, 18, 29, 44, 62, 82, 109, 141, 180, 226, 279, 339, 403, 475, 557, 651, 755, 870, 993, 1125, 1269, 1425, 1595, 1780, 1976, 2188, 2417, 2652, 2905, 3173, 3461, 3769, 4090, 4436, 4788, 5161, 5558, 5968, 6405, 6857, 7340, 7840, 8355, 8893, 9463, 10048
Offset: 1

Views

Author

Vladimir Reshetnikov, Feb 13 2025

Keywords

Examples

			For n = 2, triangles (1, 1, 1) and (2, 2, 2) can fit inside (2, 2, 2), so a(2) = 2.
		

Crossrefs

Cf. A331250.

Programs

  • Mathematica
    ClearAll[checkOnce, triangleInTriangleQ, a];
    checkOnce[{a_, b_, c_}, {p_, q_, r_}] := With[{d = (a + b - c) (a - b + c) (-a + b + c) (a + b + c), s = (p + q - r) (p - q + r) (-p + q + r) (p + q + r), u = p^2 + q^2 - r^2, v = p^2 - q^2 + r^2}, p <= a && a^2 s <= d p^2 && u v >= 0 && s (a^2 - b^2 + c^2)^2 <= d (2 a p - u)^2 && s (a^2 + b^2 - c^2)^2 <= d (2 a p - v)^2];
    triangleInTriangleQ[a_, b_, c_, p_, q_, r_] := Or @@ Flatten[Table[checkOnce[abc, pqr], {abc, {{a, b, c}, {b, c, a}, {c, a, b}}}, {pqr, Permutations[{p, q, r}]}]];
    a[n_] := Total[Flatten[Table[Boole[triangleInTriangleQ[n, n, n, p, q, r]], {p, n}, {q, p}, {r, p - q + 1, q}]]];
    Table[a[n], {n, 1, 49}]