cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381113 Decimal expansion of the asymptotic mean of the second smallest prime not dividing k, where k runs over the positive integers (A380539).

This page as a plain text file.
%I A381113 #4 Feb 17 2025 03:29:52
%S A381113 5,1,5,9,1,4,2,8,5,9,6,5,1,6,4,2,0,3,0,1,3,6,5,8,0,9,7,4,5,0,1,2,5,8,
%T A381113 1,7,2,0,0,0,7,3,0,7,2,1,4,1,9,1,6,7,9,9,3,5,0,0,6,6,3,8,8,6,6,2,4,5,
%U A381113 4,2,4,3,7,8,8,1,0,7,1,2,1,2,1,9,9,5,3,5,3,3,9,3,6,1,5,1,0,5,0,0,1,1,9,4,9
%N A381113 Decimal expansion of the asymptotic mean of the second smallest prime not dividing k, where k runs over the positive integers (A380539).
%F A381113 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A380539(k).
%F A381113 Equals Sum_{k>=2} prime(k) * (prime(k)-1) * (primesum(k-1)-k+1) / primorial(k), where primesum(k) = A007504(k) and primorial(k) = A002110(k).
%e A381113 5.15914285965164203013658097450125817200073072141916...
%o A381113 (PARI) primorial(k) = prod(i = 1, k, prime(i));
%o A381113 primesum(k) = sum(i = 1, k, prime(i));
%o A381113 suminf(k = 2, prime(k) * (prime(k)-1) * (primesum(k-1)-k+1) / primorial(k))
%Y A381113 Cf. A002110, A007504, A249270 (analogous constant with smallest prime), A380539.
%K A381113 nonn,cons
%O A381113 1,1
%A A381113 _Amiram Eldar_, Feb 14 2025