A381122 Numbers k such that k^(k+1) == k (mod k+2).
0, 1, 4, 8, 12, 20, 24, 28, 32, 36, 44, 56, 60, 72, 80, 84, 92, 104, 116, 120, 132, 140, 144, 156, 164, 168, 176, 180, 192, 200, 204, 212, 216, 224, 252, 260, 272, 276, 296, 300, 312, 324, 332, 344, 356, 360, 380, 384, 392, 396, 420, 444, 452, 456, 464, 476, 480, 500, 512, 524, 536, 540, 552, 560
Offset: 1
Keywords
Examples
a(5) = 12 is a term because 12^13 == 12 (mod 14).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(k -> (-2) &^(k+1) mod (k+2) = k, [$1..1000]);
-
Mathematica
Select[Range[0,560],PowerMod[#,#+1,#+2]==#&] (* James C. McMahon, Feb 15 2025 *)
Comments