This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381140 #15 Feb 16 2025 08:34:07 %S A381140 1,1,3,19,161,1781,24667,409991,7959233,176920489,4432942931, %T A381140 123648692795,3800647961761,127654261471517,4651982506605995, %U A381140 182824074836850991,7708128977570816129,347059689259637711441,16621016953663100702755,843658152872351669816675 %N A381140 Expansion of e.g.f. exp( -LambertW(-x * cosh(x)) ). %C A381140 As stated in the comment of A185951, A185951(n,0) = 0^n. %H A381140 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A381140 E.g.f. A(x) satisfies A(x) = exp( x * cosh(x) * A(x) ). %F A381140 a(n) = Sum_{k=0..n} (k+1)^(k-1) * A185951(n,k). %o A381140 (PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j)); %o A381140 a(n) = sum(k=0, n, (k+1)^(k-1)*a185951(n, k)); %Y A381140 Cf. A003727, A162649, A381143. %Y A381140 Cf. A185951. %K A381140 nonn %O A381140 0,3 %A A381140 _Seiichi Manyama_, Feb 15 2025