This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381144 #10 Feb 15 2025 10:11:48 %S A381144 1,1,3,13,65,221,-2933,-120903,-3104127,-71637191,-1562635789, %T A381144 -31373685947,-505087300991,-1692007785259,402032879446395, %U A381144 28152810613025521,1423083552938781697,62552808878706976625,2459148829654813484131,82692880516086149155581 %N A381144 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * cos(x)) ). %C A381144 As stated in the comment of A185951, A185951(n,0) = 0^n. %H A381144 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A381144 E.g.f. A(x) satisfies A(x) = exp( x * A(x) * cos(x * A(x)) ). %F A381144 a(n) = Sum_{k=0..n} (n+1)^(k-1) * i^(n-k) * A185951(n,k), where i is the imaginary unit. %o A381144 (PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j)); %o A381144 a(n) = sum(k=0, n, (n+1)^(k-1)*I^(n-k)*a185951(n, k)); %Y A381144 Cf. A009189, A381141, A381146. %Y A381144 Cf. A185951. %K A381144 sign %O A381144 0,3 %A A381144 _Seiichi Manyama_, Feb 15 2025