This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381145 #10 Feb 15 2025 10:11:31 %S A381145 1,1,3,15,105,937,10059,124607,1720593,25578001,391041299,5628440015, %T A381145 55397475705,-847789025159,-93469767131685,-5040670692970753, %U A381145 -236210967512228575,-10629917015586704351,-475183316832486106589,-21394016956935371375601,-975459739630268065696887 %N A381145 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-sin(x)) ). %H A381145 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A381145 E.g.f. A(x) satisfies A(x) = exp( sin(x * A(x)) ). %F A381145 a(n) = Sum_{k=0..n} (n+1)^(k-1) * i^(n-k) * A136630(n,k), where i is the imaginary unit. %o A381145 (PARI) a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j)); %o A381145 a(n) = sum(k=0, n, (n+1)^(k-1)*I^(n-k)*a136630(n, k)); %Y A381145 Cf. A002017, A381142, A381148. %Y A381145 Cf. A136630, A185690, A334856. %K A381145 sign %O A381145 0,3 %A A381145 _Seiichi Manyama_, Feb 15 2025