cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381146 E.g.f. A(x) satisfies A(x) = exp( x * cos(x * A(x)) ).

This page as a plain text file.
%I A381146 #10 Feb 15 2025 10:11:52
%S A381146 1,1,1,-2,-35,-264,-1019,9864,302905,4181824,23080201,-632195200,
%T A381146 -25239729899,-478790195584,-2682065360883,188875659540736,
%U A381146 8843706554450033,203538869514047488,751681101659548177,-169782541027003551744,-8866196526809624969139
%N A381146 E.g.f. A(x) satisfies A(x) = exp( x * cos(x * A(x)) ).
%C A381146 As stated in the comment of A185951, A185951(n,0) = 0^n.
%F A381146 a(n) = Sum_{k=0..n} (n-k+1)^(k-1) * i^(n-k) * A185951(n,k), where i is the imaginary unit.
%o A381146 (PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
%o A381146 a(n) = sum(k=0, n, (n-k+1)^(k-1)*I^(n-k)*a185951(n, k));
%Y A381146 Cf. A009189, A381141, A381144.
%Y A381146 Cf. A185951.
%K A381146 sign
%O A381146 0,4
%A A381146 _Seiichi Manyama_, Feb 15 2025