This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381153 #7 Feb 15 2025 16:49:30 %S A381153 9,3,1,9,4,0,6,2,3,4,9,9,0,9,5,7,4,5,9,5,2,2,2,6,3,0,0,8,9,4,2,2,7,5, %T A381153 4,5,7,4,5,2,8,5,2,5,1,5,4,7,1,5,3,1,5,6,1,2,7,3,2,0,2,2,6,8,8,6,4,5, %U A381153 2,5,3,9,4,8,0,5,4,7,8,5,6,9,3,7,7,2,8,6,7,1 %N A381153 Decimal expansion of the isoperimetric quotient of a regular heptagon. %C A381153 For the definition of isoperimetric quotient, see A381152. %H A381153 Paolo Xausa, <a href="/A381153/b381153.txt">Table of n, a(n) for n = 0..10000</a> %H A381153 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsoperimetricQuotient.html">Isoperimetric Quotient</a>. %H A381153 Wikipedia, <a href="https://en.wikipedia.org/wiki/Isoperimetric_inequality">Isoperimetric inequality</a>. %F A381153 Equals Pi/(7*tan(Pi/7)) = Pi/(7*A343058). %F A381153 Equals (4/49)*Pi*A178817. %e A381153 0.93194062349909574595222630089422754574528525154715... %t A381153 First[RealDigits[Pi/(7*Tan[Pi/7]), 10, 100]] %Y A381153 Cf. A178817, A343058. %Y A381153 Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon). %K A381153 nonn,cons,easy %O A381153 0,1 %A A381153 _Paolo Xausa_, Feb 15 2025