cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381156 Decimal expansion of the isoperimetric quotient of a regular 11-gon.

This page as a plain text file.
%I A381156 #7 Feb 15 2025 16:49:48
%S A381156 9,7,2,6,6,2,0,0,0,9,1,9,9,0,6,8,1,9,5,3,8,2,8,8,9,7,9,3,8,5,2,6,7,6,
%T A381156 3,1,7,1,2,9,6,5,4,1,1,1,4,2,3,4,2,8,8,2,7,3,7,9,8,9,0,4,7,0,0,5,8,7,
%U A381156 1,2,6,7,8,3,2,5,6,9,3,0,8,0,2,3,1,7,8,7,5,0
%N A381156 Decimal expansion of the isoperimetric quotient of a regular 11-gon.
%C A381156 For the definition of isoperimetric quotient, see A381152.
%H A381156 Paolo Xausa, <a href="/A381156/b381156.txt">Table of n, a(n) for n = 0..10000</a>
%H A381156 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsoperimetricQuotient.html">Isoperimetric Quotient</a>.
%H A381156 Wikipedia, <a href="https://en.wikipedia.org/wiki/Isoperimetric_inequality">Isoperimetric inequality</a>.
%F A381156 Equals Pi/(11*tan(Pi/11)).
%F A381156 Equals (4/121)*Pi*A256854.
%e A381156 0.97266200091990681953828897938526763171296541114234...
%t A381156 First[RealDigits[Pi/(11*Tan[Pi/11]), 10, 100]]
%Y A381156 Cf. A256854.
%Y A381156 Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381157 (12-gon).
%K A381156 nonn,cons,easy
%O A381156 0,1
%A A381156 _Paolo Xausa_, Feb 15 2025