This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381157 #6 Feb 15 2025 16:49:57 %S A381157 9,7,7,0,4,8,6,1,6,6,5,6,8,5,3,3,3,5,7,2,5,6,2,6,7,9,4,9,5,7,1,2,2,7, %T A381157 4,7,1,0,3,8,7,8,1,2,8,5,8,5,7,0,2,7,8,0,7,2,1,6,2,8,6,6,5,8,9,8,3,3, %U A381157 3,5,2,9,6,6,2,6,2,3,3,0,4,0,2,5,7,0,3,7,1,7 %N A381157 Decimal expansion of the isoperimetric quotient of a regular 12-gon. %C A381157 For the definition of isoperimetric quotient, see A381152. %H A381157 Paolo Xausa, <a href="/A381157/b381157.txt">Table of n, a(n) for n = 0..10000</a> %H A381157 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsoperimetricQuotient.html">Isoperimetric Quotient</a>. %H A381157 Wikipedia, <a href="https://en.wikipedia.org/wiki/Isoperimetric_inequality">Isoperimetric inequality</a>. %F A381157 Equals Pi/(12*tan(Pi/12)) = Pi/(12*A019913). %F A381157 Equals (1/36)*Pi*A178809. %e A381157 0.97704861665685333572562679495712274710387812858570... %t A381157 First[RealDigits[Pi/(12*Tan[Pi/12]), 10, 100]] %Y A381157 Cf. A019913, A178809. %Y A381157 Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon). %K A381157 nonn,cons,easy %O A381157 0,1 %A A381157 _Paolo Xausa_, Feb 15 2025