This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381158 #28 Mar 20 2025 10:32:04 %S A381158 2,3,5,7,41,43,61,83,521,541,743,761,941,983,6521,8521,8543,8741,8761, %T A381158 76541,76543,94321,98321,98543 %N A381158 Prime numbers where digit values decrease while alternating parity. %e A381158 41 is a term, since the digits decrease in value and alternate even and odd. %p A381158 b:= proc(n) `if`(isprime(n), n, [][]), seq(b(10*n+j), j=irem(n, 10)-1..1, -2) end: %p A381158 {seq(b(n), n=1..9)}[]; # _Alois P. Heinz_, Mar 12 2025 %t A381158 ad=Select[Prime[Range[10^6]],Reverse[Union[IntegerDigits[#]]]==IntegerDigits[#]&];fQ[n_] := Block[{m = Mod[ IntegerDigits@ n, 2]}, m == Split[m, UnsameQ][[1]]];Select[ad,fQ] (* _James C. McMahon_, Mar 20 2025 *) %o A381158 (Python) %o A381158 from sympy import isprime %o A381158 from itertools import combinations %o A381158 def ap(s): return all((s[i] in "13579") == (s[i+1] in "02468") for i in range(len(s)-1)) %o A381158 def afull(): return sorted(t for d in range(1, 10) for c in combinations("987654321", d) if ap(c) and isprime(t:=int("".join(c)))) %o A381158 print(afull()) # _Michael S. Branicky_, Mar 10 2025 %Y A381158 Cf. A052014, A000040, A028867, A028864, A052015, A382027. %K A381158 nonn,base,fini,full %O A381158 1,1 %A A381158 _James S. DeArmon_, Feb 15 2025