This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381162 #12 May 29 2025 02:42:06 %S A381162 1,1680,32432400,999456057600,37905932634570000, %T A381162 1617318175088527591680,74451445170005824874553600, %U A381162 3614146643656788883257309696000,182458061523203642337177421198794000,9493111901274733909567003010522405280000,505860213332178847817809654781948251947782400 %N A381162 a(n) = (8*n)!/((n!)^4*(4*n)!). %C A381162 Calabi-Yau series number 7. %H A381162 S. Hassani, J.-M. Maillard, and N. Zenine, <a href="https://arxiv.org/abs/2502.05543">On the diagonals of rational functions: the minimal number of variables (unabridged version)</a>, arXiv:2502.05543 [math-ph], 2025. See pp. 14-15. %F A381162 G.f.: hypergeom([1/8, 3/8, 5/8, 7/8], [1, 1, 1], 2^16*x). %F A381162 a(n) ~ 2^(16*n - 3/2) / (Pi^2*n^2). - _Vaclav Kotesovec_, May 29 2025 %t A381162 a[n_]:=(8n)!/((n!)^4*(4n)!); Array[a,11,0] %Y A381162 Cf. A100733, A134375, A195392. %Y A381162 Cf. A381161, A381163, A381164, A381165. %K A381162 nonn %O A381162 0,2 %A A381162 _Stefano Spezia_, Feb 15 2025