cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381177 E.g.f. A(x) satisfies A(x) = 1/( 1 - A(x) * sinh(x * A(x)) ).

This page as a plain text file.
%I A381177 #10 Feb 16 2025 10:05:59
%S A381177 1,1,6,73,1352,33861,1072000,41083477,1849680768,95708731945,
%T A381177 5597075177984,365091888890433,26281788308598784,2069729710424907181,
%U A381177 177006820644852031488,16337090667286093559821,1618592591411194127089664,171337824188415839421148881,19299478529228162963028508672
%N A381177 E.g.f. A(x) satisfies A(x) = 1/( 1 - A(x) * sinh(x * A(x)) ).
%F A381177 a(n) = Sum_{k=0..n} k! * binomial(n+2*k+1,k)/(n+2*k+1) * A136630(n,k).
%o A381177 (PARI) a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
%o A381177 a(n) = sum(k=0, n, k!*binomial(n+2*k+1, k)/(n+2*k+1)*a136630(n, k));
%Y A381177 Cf. A162653, A201628, A381179.
%Y A381177 Cf. A136630, A196776.
%K A381177 nonn
%O A381177 0,3
%A A381177 _Seiichi Manyama_, Feb 16 2025