This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381202 #12 Feb 18 2025 18:57:15 %S A381202 0,3,4,2,6,6,8,5,5,8,12,6,14,10,9,6,18,6,20,8,11,14,24,6,7,16,3,10,30, %T A381202 11,32,7,15,20,13,5,38,22,17,11,42,13,44,14,11,26,48,10,9,8,21,16,54, %U A381202 6,17,13,23,32,60,11,62,34,13,8,19,17,68,20,27,15,72,5 %N A381202 a(n) is the sum of the elements of the set of bases and exponents (including exponents = 1) in the prime factorization of n. %C A381202 The prime factorization of 1 is the empty set, so a(1) = 0 by convention (empty sum). %H A381202 Paolo Xausa, <a href="/A381202/b381202.txt">Table of n, a(n) for n = 1..10000</a> %e A381202 a(12) = 6 because 12 = 2^2*3^1, the set of these bases and exponents is {1, 2, 3} and 1 + 2 + 3 = 6. %e A381202 a(31500) = 18 because 31500 = 2^2*3^2*5^3*7^1, the set of these bases and exponents is {1, 2, 3, 5, 7} and 1 + 2 + 3 + 5 + 7 = 18. %t A381202 A381202[n_] := If[n == 1, 0, Total[Union[Flatten[FactorInteger[n]]]]]; %t A381202 Array[A381202, 100] %o A381202 (PARI) a(n) = my(f=factor(n)); vecsum(setunion(Set(f[,1]), Set(f[,2]))); \\ _Michel Marcus_, Feb 18 2025 %Y A381202 Cf. A008474, A338038, A381201, A381203, A381204, A381205. %K A381202 nonn,easy %O A381202 1,2 %A A381202 _Paolo Xausa_, Feb 16 2025