cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381204 a(n) is the gcd of the elements of the set of bases and exponents in the prime factorization of n.

This page as a plain text file.
%I A381204 #13 Feb 21 2025 16:46:51
%S A381204 1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,
%T A381204 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,
%U A381204 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A381204 a(n) is the gcd of the elements of the set of bases and exponents in the prime factorization of n.
%C A381204 The positions of terms > 1 are given by A368107.
%H A381204 Paolo Xausa, <a href="/A381204/b381204.txt">Table of n, a(n) for n = 2..10000</a>
%e A381204 a(16) = 2 because 16 = 2^4, the set of these bases and exponents is {2, 4} and gcd(2, 4) = 2.
%e A381204 a(19683) = 3 because 19683 = 3^9, the set of these bases and exponents is {3, 9} and gcd(3, 9) = 3.
%t A381204 A381204[n_] := GCD @@ Flatten[FactorInteger[n]];
%t A381204 Array[A381204, 100 ,2]
%o A381204 (PARI) a(n) = my(f=factor(n)); gcd(setunion(Set(f[,1]), Set(f[,2]))); \\ _Michel Marcus_, Feb 18 2025
%Y A381204 Cf. A368107, A381201, A381202, A381203, A381205.
%K A381204 nonn,easy
%O A381204 2,3
%A A381204 _Paolo Xausa_, Feb 17 2025