cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381212 a(n) is the smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of n.

This page as a plain text file.
%I A381212 #12 Mar 05 2025 05:36:43
%S A381212 1,1,2,1,1,1,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,3,1,1,1,1,2,1,1,1,
%T A381212 2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,
%U A381212 1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1
%N A381212 a(n) is the smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of n.
%C A381212 The corresponding largest elements are given by A081812.
%C A381212 The positions of terms > 1 are given by A001694.
%C A381212 Records of a(n) = 2, 3, 4, 5,.. appear at n=4=2^2, 27=3^3, 625=5^4, 3125=5^5, 117649=7^6, 823543=7^7 ,... (subsequence A051647).- _R. J. Mathar_, Mar 05 2025
%H A381212 Paolo Xausa, <a href="/A381212/b381212.txt">Table of n, a(n) for n = 2..10000</a>
%e A381212 a(36) = 2 because 36 = 2^2*3^2, the set of these bases and exponents is {2, 3} and its smallest element is 2.
%e A381212 a(31500) = 1 because 31500 = 2^2*3^2*5^3*7^1, the set of these bases and exponents is {1, 2, 3, 5, 7} and its smallest element is 1.
%p A381212 A381212 := proc(n)
%p A381212     local a,pe;
%p A381212     a := n ;
%p A381212     for pe in ifactors(n)[2] do
%p A381212         a := min(a,op(1,pe),op(2,pe)) ;
%p A381212     end do:
%p A381212     a ;
%p A381212 end proc:
%p A381212 seq(A381212(n),n=2..100) ; # _R. J. Mathar_, Mar 05 2025
%t A381212 A381212[n_] := Min[Flatten[FactorInteger[n]]];
%t A381212 Array[A381212, 100, 2]
%o A381212 (PARI) a(n) = my(f=factor(n)); vecmin(setunion(Set(f[,1]), Set(f[,2]))); \\ _Michel Marcus_, Feb 20 2025
%Y A381212 Cf. A001694, A081812, A288636, A331048, A381201, A381202, A381203, A381204, A381205, A381214.
%K A381212 nonn,easy
%O A381212 2,3
%A A381212 _Paolo Xausa_, Feb 19 2025