A381224 a(n) is the integer resulting from the concatenation of the unit digit of prime(n-1) to the digits of prime(n) without its own unit digit.
0, 2, 3, 5, 71, 11, 31, 71, 92, 32, 93, 13, 74, 14, 34, 75, 35, 96, 16, 77, 17, 37, 98, 38, 99, 710, 110, 310, 710, 911, 312, 713, 113, 713, 914, 915, 115, 716, 316, 717, 317, 918, 119, 119, 319, 719, 921, 122, 322, 722, 923, 323, 924, 125, 125, 726, 326, 927, 127, 728, 128, 329, 330, 731, 131, 331, 733, 133, 734, 734, 935, 335
Offset: 1
Examples
Starting from 2, 3, 5, 7, 11, 13, 17, 19, ... we get 0, 2, 3, 5, 71, 11, 31, 71, ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a381224 := proc(n) local i,p; if n=1 then i:=0; else i:=(ithprime(n-1) mod 10); fi; p:=ithprime(n); i * 10^ilog10(p) + floor(p/10); end;
-
Python
from sympy import prime def a(n): return 0 if n == 1 else int(str(prime(n-1)%10)+ str(prime(n))[:-1]) print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Feb 22 2025
Comments