A381239 Primes of the form Sum_{k >= 0} floor(m/5^k) for some number m.
2, 3, 7, 13, 19, 31, 37, 41, 43, 47, 53, 59, 71, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 313, 331, 337, 347, 349, 353, 359
Offset: 1
Keywords
Examples
floor(16/1) + floor(16/5) = 19, so 19 is in the sequence.
Programs
-
Mathematica
f[n_] := Sum[Floor[n/5^k], {k, 0, Floor[Log[5, n]]}] (* A191610 *) u=Select[Range[400], PrimeQ[f[#]] &] Map[f, u]