A381240 Indices of records in A381096.
1, 6, 10, 12, 14, 18, 22, 24, 28, 30, 42, 54, 60, 66, 78, 84, 90, 102, 114, 120, 126, 132, 138, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714, 750, 780, 810, 840
Offset: 1
Keywords
Examples
Let g(n) = A067255(n) be the exponents of prime power factors p^m | n, writing "." for m = 0 and ending at the pi(gpf(n))-th term. Example: for n = 84, g(84) = {2, 1, 0, 1}, therefore we write "21.1" for concision in the table below. Table of first 12 terms. n a(n) g(a(n)) f(a(n)) -------------------------- 1 1 . 0 2 6 11 3 3 10 1.1 5 4 12 21 6 5 14 1..1 7 6 18 12 10 7 22 1...1 11 8 24 31 13 9 28 2..1 14 10 30 111 21 11 42 11.1 29 12 54 13 33
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1782 (a(n) < 2^28).
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n,pi(p)), n = 1..1781, 4X vertical exaggeration for clarity, with a color function representing m = 1 in black, m = 2 in red, m = 3 in orange, ..., largest m in the dataset in magenta.
Programs
-
Mathematica
r = 0; nn = 2^20; f[x_] := x - EulerPhi[x] - DivisorSigma[0, x/Apply[Times, FactorInteger[x][[All, 1]] ] ]; {1}~Join~Reap[Monitor[Do[If[# > r, r = #; Sow[n]] &[f[n] ], {n, nn}], n]]
Comments