A381245 Numbers that are partial sums of the reverses of the sequence of primes and are reverses of primes.
2, 5, 17, 358, 775, 3145, 7813, 10277, 13978, 15232, 19478, 32324, 36056, 70042, 71396, 72893, 76856, 102374, 141982, 155585, 301291, 331357, 332588, 354643, 717817, 763586, 791641, 799532, 922981, 931705, 935117, 940241, 952975, 993551, 1020461, 1028383, 1060075, 1094099, 1126831, 1145257
Offset: 1
Examples
a(4) = 358 is a term because 358 = A071602(11) is the sum of the reverses of the first 11 primes, and is the reverse of the prime 853. A071602(7) = 130 is not a term, because 130 is not the reverse of a prime, even though the reverse of 130 is a prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: PR:= map(rev, select(isprime, [$1..10000]): SPR:= ListTools:-PartialSums(PR): select(t -> t mod 10 <> 0 and isprime(rev(t)),SPR);
Comments