This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381250 #17 May 06 2025 23:50:18 %S A381250 1,2,6,1001,81719,101007559,84248643949,78464111896111, %T A381250 997804397813471821,1314665322768473913751,25030469300030639321689313, %U A381250 93516019518175801382127421211,1873482639168918364977596279806547,60958708904928776821774364389940352443,1089851191947047137351117158610882538395561 %N A381250 a(n) = least k with n distinct prime factors such that floor(log_q(k)) = floor(log_p(k))-1, where p is the smallest prime factor of k, and q is any other distinct prime factor of k. %C A381250 Terms are squarefree. %e A381250 Let lpf = A020639, slpf = A119288, and gpf = A006530. %e A381250 Table of a(n), n=0..12, listing the indices of the smallest, second smallest, and greatest prime factors, the latter 2 pertaining to n >= 2 and n >= 3, respectively. %e A381250 prime indices %e A381250 n a(n) lpf slpf-gpf prime factors %e A381250 ------------------------------------------------------------------------- %e A381250 0 1 0 - %e A381250 1 2 1 2 %e A381250 2 6 1 2 2*3 %e A381250 3 1001 4 5-6 7*11*13 %e A381250 4 81719 5 7-9 11*17*19*23 %e A381250 5 101007559 9 13-16 23*41*43*47*53 %e A381250 6 84248643949 12 19-23 etc. %e A381250 7 78464111896111 17 25-30 %e A381250 8 997804397813471821 26 41-47 %e A381250 9 1314665322768473913751 32 48-55 %e A381250 10 25030469300030639321689313 47 69-77 %e A381250 11 93516019518175801382127421211 56 83-92 %e A381250 12 1873482639168918364977596279806547 73 108-118 %e A381250 Let f(p,k) = floor(log_p k) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k. %e A381250 a(0) = 1 since 1 is the only number that does not have prime factors. %e A381250 a(1) = 2 since prime numbers have just 1 prime factor, and 2 is the smallest prime. %e A381250 a(2) = 6 since f(2,6) = 2 and f(3,6) = 1; 6 is the smallest squarefree semiprime. %e A381250 a(3) = 1001 since w(1001) = {3,2,2} and is the smallest sphenic number with this property. %e A381250 30 is not in the sequence since w(30) = {4,3,2}; 42 is not in since w(42) = {5,3,1}, etc. %e A381250 a(4) = 81719 since w(81719) = {4,3,3,3} and is the smallest number with 4 distinct prime factors with this property, etc. %t A381250 f[om_, lm_] := Block[{f, i, j, k, nn, p, q, w, z}, %t A381250 i = Abs[om]; z = i - 1; j = z; nn = Abs[lm]; w = ConstantArray[1, i]; %t A381250 Catch@ Do[ %t A381250 While[Set[{k, p, q}, {Times @@ #, #[[1]], #[[2]]}] &@ %t A381250 Map[Prime, Accumulate@ w]; k <= nn, %t A381250 If[And[q^i > k, p^(i + 1) > k], Throw[k]]; %t A381250 j = z; w[[-j]]++]; %t A381250 If[j == i, Break[], j++; w[[-j]]++; %t A381250 w = PadRight[w[[;; -j]], i, 1]], {ii, Infinity}] ]; %t A381250 {1, 2}~Join~Table[f[n, 2^(11*n + 2)], {n, 2, 16}] %Y A381250 Cf. A001221, A005117, A006530, A020639, A119288, A138109, A382022. %K A381250 nonn %O A381250 0,2 %A A381250 _Michael De Vlieger_, Apr 21 2025