A381251 a(n) is the number of ways to write prime(n) as a sum of distinct composites.
0, 0, 0, 0, 0, 1, 1, 3, 4, 10, 14, 27, 40, 52, 74, 133, 229, 276, 457, 626, 744, 1189, 1599, 2498, 4450, 5862, 6752, 8835, 10139, 13189, 32481, 41614, 60099, 67900, 122825, 138101, 195147, 274193, 342783, 477381, 661502, 736865, 1252245, 1390615, 1711496, 1897886
Offset: 1
Keywords
Examples
a(8) = 3 because prime(8) = 19 can be written in 3 ways as a sum of distinct composites: 19 = 9 + 10 = 9 + 4 + 6 = 15 + 4.
Links
- Felix Huber, Table of n, a(n) for n = 1..4000
Programs
-
Maple
P:= [seq(ithprime(i),i=1..100)]: C:= {$2..P[-1]} minus convert(P,set): G:= mul(1+x^c,c=C): seq(coeff(G,x,P[i]),i=1..100); # Robert Israel, Apr 22 2025
Comments