A381253 Prime numbers whose constant congruence speed of tetration is greater than 1.
5, 7, 43, 101, 107, 149, 151, 157, 193, 199, 251, 257, 293, 307, 349, 401, 443, 449, 457, 499, 557, 593, 599, 601, 607, 643, 701, 743, 751, 757, 857, 907, 1049, 1051, 1093, 1151, 1193, 1201, 1249, 1301, 1307, 1399, 1451, 1493, 1499, 1543, 1549, 1601, 1607, 1657
Offset: 1
Examples
a(1) = 5 since 5 is the smallest prime number with a constant congruence speed of at least 2.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
Links
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024. See pp. 22-23, 27.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Crossrefs
Programs
-
Python
from sympy import isprime valid_mod_50 = {1, 7, 43, 49} result = [5] n = 6 while len(result) < 1000: if isprime(n) and n % 50 in valid_mod_50: result.append(n) n += 1 print(result)
Formula
a(1) = 5. For n >= 2, a(n) = A172469(n-1).
Comments