cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381265 a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 3.

Original entry on oeis.org

6, 21, 57, 138, 294, 606, 1170, 2208, 4008, 7176, 12492, 21510, 36348, 60801, 100281, 164019, 265263, 425853
Offset: 3

Views

Author

Wouter Meeussen, Feb 18 2025

Keywords

Comments

Conjecture: equal to 3*(2*A000219 -A000990 -2*A000041 +1) tested up to n=20.

Examples

			a(3)=6 since the 6 solid partitions of {3,3} are:
  z[{{3}},{{3}}],
  z[{{2,1}},{{2,1}}],
  z[{{1,1,1}},{{1,1,1}}],z[{{2},{1}},{{2},{1}}],
  z[{{1,1},{1}},{{1,1},{1}}],
  z[{{1},{1},{1}},{{1},{1},{1}}].
		

Crossrefs

Programs

  • Mathematica
    Table[Length@solidformBTK[{n,3}],{n,3,20}] (* or *)
    g=20;3 CoefficientList[Series[2/Product[(1-x^m)^m,{m,g}]+ 1/(1-x)-(1-x)/Product[(1-x^m)^2,{m,g}]-2/Product[(1-x^m),{m,g}],{x,0,g}],x]

Formula

G.f.: 3*(2*Product_{k>0} 1/(1-x^k)^k -(1-x)*Product_{k>0} 1/(1-x^k)^2 - 2*Product_{k>0} 1/(1-x^k) + 1/(1 - x)) (conjectured).