This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381266 #27 Mar 17 2025 22:15:51 %S A381266 1,0,12,34,134,0,1477,6891,38627,0,891230,4874690,28507439,0, %T A381266 1078575795,7002987575,46916000817,0,2295911609450,16720559375850, %U A381266 124852897365573,0,7468470450367652,59705969514613035,487357094495846175,0,34452261762372201726,297930994005481958694 %N A381266 a(n) = least positive integer m such that when m*(m+1) is written in base n, it contains every single digit exactly once, or 0 if no such number exists. %C A381266 It appears that for each base of the form 4k+3, no number can be found that satisfies the requirement. %C A381266 From _Chai Wah Wu_, Mar 13 2025: (Start) %C A381266 The above observation is true. %C A381266 Theorem: if n==3 (mod 4), then a(n) = 0. %C A381266 Proof: Since n^a == 1 (mod n-1), k == the digit sum of k in base n (mod n-1). Thus for a number k with every digit exactly once, k == n(n-1)/2 (mod n-1). %C A381266 Suppose n==3 (mod 4), i.e. n=2q+1 for some odd q. Then n(n-1)/2 = 2q^2+q. Since n-1 = 2q, this means that n(n-1)/2 == q (mod n-1). As q is odd, m(m+1) is even and n-1 is even, this implies that m(m+1) <> q (mod n-1) and thus m(m+1) is not a number with every digit exactly once and the proof is complete. %C A381266 Conjecture: a(n) = 0 if and only if n==3 (mod 4). %C A381266 (End) %H A381266 Daniel Mondot, <a href="/A381266/a381266.txt">details for each term, in respective base.</a> %F A381266 a(n) = 0 if n == 3 (mod 4). - _Chai Wah Wu_, Mar 13 2025 %e A381266 1477 is 2705 in octal. 2705 * 2706 = 10247536 (base 8) %e A381266 38627 * 38628 = 1492083756 (base 10) %e A381266 see a381266.txt for more %o A381266 (Python) %o A381266 from itertools import count %o A381266 from math import isqrt %o A381266 from sympy.ntheory import digits %o A381266 def A381266(n): %o A381266 k, l, d = (n*(n-1)>>1)%(n-1), n**n-(n**n-n)//(n-1)**2, tuple(range(n)) %o A381266 clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k] %o A381266 if len(clist) == 0: %o A381266 return 0 %o A381266 s = (n**n-n)//(n-1)**2+n**(n-2)*(n-1)-1 %o A381266 s = isqrt((s<<2)+1)-1>>1 %o A381266 s += n-1-s%(n-1) %o A381266 if s%(n-1) <= max(clist): %o A381266 s -= n-1 %o A381266 for a in count(s,n-1): %o A381266 if a*(a+1)>l: %o A381266 break %o A381266 for c in clist: %o A381266 m = a+c %o A381266 if m*(m+1)>l: %o A381266 break %o A381266 if tuple(sorted(digits(m*(m+1),n)[1:]))==d: %o A381266 return m %o A381266 return 0 # _Chai Wah Wu_, Mar 17 2025 %Y A381266 Cf. A381248. %K A381266 nonn,base %O A381266 2,3 %A A381266 _Daniel Mondot_ and _Ali Sada_, Feb 18 2025 %E A381266 a(19)-a(29) from _Chai Wah Wu_, Mar 12 2025